Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 140-150, 2023.
Article in Chinese | WPRIM | ID: wpr-973755

ABSTRACT

ObjectiveTo study the potential quality marker (Q-marker) of Tinosporae Radix associated with efficacy of "relieving sore throat" based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), multivariate statistical analysis (MSA), and network pharmacology. MethodUPLC-Q-TOF-MS was used to identify the main chemical components in 18 batches of Tinosporae Radix. On this basis, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed to screen out the main marker components that caused differences between groups. Moreover, network pharmacology technology was applied to predict the potential "sore throat-relieving" components, and the molecular docking between the common components resulting from MSA and network pharmacology and the core targets was carried out to verify the marker components. ResultA total of 17 compounds, including alkaloids, diterpenoid lactones, and sterols, were identified by UPLC-Q-TOF-MS. Five main differential components were found by MSA: Columbamine, jatrorrhizine, palmatine, menisperine, and columbin. Network pharmacology analysis yielded six compounds: tetrahydropalmatine, palmatine, menisperine, fibleucin, neoechinulin A, and columbin which were selected as potential "sore throat-relieving" components of Tinosporae Radix. They may relieve sore throat by acting on interleukin-6, epidermal growth factor receptor, prostaglandin G/H synthase 2, matrix metalloproteinase-9, proto-oncogene tyrosine-protein kinase Src and other targets, and regulating Hepatitis B, influenza A, human T-cell virus infection, human cytomegalovirus infection, coronavirus disease-2019, and other signaling pathways. The common active components in Tinosporae Radix resulting from MSA and network pharmacology analysis were palmatine, menisperine, and columbin, which had high binding affinity with six core targets and can be used as the Q-marker components of Tinosporae Radix in "relieving sore throat". ConclusionThis study predicts the "sore throat-relieving" Q-marker of Tinosporae Radix, which lays a basis for developing the quality standard of Tinosporae Radix based on the efficacy and improving the quality evaluation system of the medicinal.

SELECTION OF CITATIONS
SEARCH DETAIL